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J. Phys. A: Math. Gen. 19 (1986) L317-L321. Rinted in Great Britain 

LETTER TO THE EDITOR 

Axial anomaly and index theorem for a two-dimensional disc 
with boundary? 

Zhong-Qi Ma$ 
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA 

Received 4 December 1985 

Abstract. As a complement of the paper of Ninomiya and Tan, we obtain a correct index 
formula for a two-dimensional disc with a boundary which is a special case of the APS 

theorem. 

Recently, we read a beautiful paper by Ninomiya and Tan (1985) (NT) who discussed 
the index theorem, as a special case of a general index theorem proved by Atiyah et 
al (1975a, b, 1976) (APS), for the manifold with a boundary in terms of 'handed' 
non-local boundary conditions. For a manifold with boundaries NT obtained the 
general expression of the index theorem, including the boundary contributions: 

n+- n- = A(X) d X - z f (  Y , )  (1) I, i 

where A(X)  is the anomaly density, n+( n-) is the number of chirality positive (negative) 
zero energy solutions to the Dirac eigenvalue equation and f( 5)  is the surface 
contribution of the j th  boundary. 

In physics, we usually use two kinds of coordinates: those with length dimension 
and the angular coordinates. There are some characteristics for the angular coordinates 
which should be dealt with carefully. Unfortunately, NT made some mistakes in the 
index theorem for the angular coordinates. In order to make the problem clear, we 
only discuss the index theorem for a two-dimensional disc with a boundary in this 
letter. We use the same notation as NT. 

In a two-dimensional manifold we introduce a circular boundary about an appropri- 
ate origin, i.e. restricting 0 G r S p in polar coordipates (r, e). Adopting a 'radial' gauge 
where the general gauge potential is along the 8 direction, 

The massless 

~ = ~ ~ ( r , e ) = ( - s i n e x ^ + c o s  ef)v(r, e). 
Dirac operator is 

( L  " + )  i P =  -icr2(a,-iV,)+iul(ay-iVy)= 

L = ei"[a, + E,( e)] 
E , ( 8 )  = (i /r)  d e +  V(r, 0) 

L+ = eCe[-al + E,( e)] 

where V( r, e )  is real, and E,( 0) is, for a fixed r, self-adjoint over the periodic interval. 

t Work supported by the Department of Energy, contract DE-AC03-76SF00515, 
$ On leave from the Institute of High Energy Physics, Academia Sinica, PO Box 918, Beijing, People's 
Republic of China. 
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The eigenfunction of ip l  is denoted by +hE: 

LdE = EXE L+xE = EdE. (7) 

As a first step towards deriving an index theorem, proper boundary conditions 
must be imposed so that L and L+ are true adjoint of each other, that is, (+]L'1,y) = 
(xIL(d)*. However, owing to the factor eie(e-") in L(Lf), the global boundary 
condition has a different form from equation (3.2) in Atiyah et a1 (1975a). From (4) 
we have 

L = (e'"/'/J;)[a, + & ( e ) ]  eiel2J; 

L+ = (eP"'/J;)[ -a, + B,( e)] e-"/'J;. 
(4') 

The two components in #E have different 8 dependences: 

1 e+/' dIE(r ,  e) ]  
XlE(r,O) ' 

' E-J;  --[ e 1 e ~ 2  ' 

Therefore, we obtain the eigenvalue equations 

L1 = a, + B,( e)  L: = -a,+ B,( e) 
L1 d 1 E = Exl E L:XIE = E d l E  

and the global boundary condition 

rdBeiex:.(r, O)dE(r, e ) =  deXTE'(r, 6)dlE(r,  e)=O r=O or p. lo2= lo2T 
We define the continuous effective potential 

21r 

The anomaly is 

(9) 

Usually we demand V(0)  = 0 in order to make gauge potential V single-valued at the 
origin. Only for the manifold with a hole around the origin, the non-vanishing V(S) 
is allowed, where 6 is the radius of the hole, and the anomaly is 

A = p V ( p ) - S V ( S ) .  

Solving the eigenvalue problem of B,( e), we obtain 

B,(@)e,(r, e )  = Are,(r, e )  

[ V (  r, e' )  - V( r)] de'  

A~ = - ( ~ r - ' ) +  V(r) 

where J is half of the odd integer so that JIE is single-valued. 
(14) 

Now, at the boundaries, 
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With these conditions, L ,  and L: are adjoints of each other and the APS theorem (1) 
can in principle be applied. The boundary contributions are 

f( P )  = t [ rl( p )  - h, 1 f(6) = f [ 7 m + h s l  (17) 

h, = dim ker B,. (18) 

Noticing that J is half of the odd integer, we obtain 

f( P )  = ( p V (  P )  + f) - t f ( s ) = f - ( s V ( s ) + t )  
where 

( A )  = A - [ A ]  

and [ A ]  denotes the largest integer less than or equal to A. 

operator i B  
Substituting (11’) and (19) into (1) we find the index of the massless Dirac 

? l + - ? l - = A - f ( p ) - f ( S )  (1‘) 

(21) 

= p q  p )  - SQ( S )  - ( p V (  p )  + 4) +(se( 6) + f) 
= [ p V (  p )  + $1 - [ 6 V( 6)  + $1. 

For the disc without a hole around the origin 

f( p 1 = ( p P( P )  + t )  - f 
f ( O ) = O  
n, - n- = p V (  p )  -( pV(  p )  + f > + f  

= p Q( P )  + $1 .  
t If the global boundary condition at r = p of NT is imposed (see (6.5)-(6.8) in their paper, and f A (  p )  f 0 
when A a O ,  & (p ) fO  when A<O), the non-vanishing f,,(p)e,,(e) with the lowest A = A ,  and the non- 
vanishing g,,(p)e,,(e) with the largest A = A, will not satisfy (9). because eiBe,, = eA2. 
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As a check, we discuss a symmetric gauge with V (  r, 6) = V (  r )  in a disc, 0 4 r c p, 
without a hole around the origin. For this case we have 

e, (6) = exp(iJ8) A, = -Jr-’ + V (  r) 

L’ = a, - Jr-’ + V (  r )  L: = -a, - Jr-’ + V (  r ) .  (23) 

The chirality positive and negative zero energy solutions to the Dirac eigenvalue 
equation are the following: 

[ crJ r - 0  - 
[exp( J In p - 1: V (  r ’ )  dr‘) r = p 

g,O(r)=exp[ -1: ($- V ( r ’ ) )  dr’] 

(cr-’ r -0  

where we assume that p > 1 without loss of generality. Imposing the global boundary 
conditions (16) at r = 0 and r = p, we obtain ( J  is half of the odd integer!) 

; s J s pV( p )  

- ; s  J >  pV( p )  

f o r f A O  

for g.40 

and 

n+ = [ PV( P )  +416[ V (  P I 1  

n- = -[ PV( P )  + t l  e[- V (  P I 1  

so (21’) follows. 
If, for example, 

we have 
n, - n- = ( F + f ) .  

Boyanovsky and Blankenbecler (1985)T also obtained this result for F + f  # integer. 

t They imbedded the radial half-line problem onto the full line and recovered the problem of interest by a 
simple and tame limiting procedure, instead of the global boundary condition (16). See equations (2.54) 
and (2.76) in their paper. 
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For the constant H-field example, 

V(  r) = f H r  (29) 
we have 

exp[i(J-f)O -{Hr2] J - ( 1 / 2 )  4 o ( r ,  0) = r 

xo(r, e )  = r -J- (”2)  exp[i(J+i)O+{Hr2]. (306) 

Due to the left-handed condition at r = 0, only J z. f, i.e. J - 4  3 0, is accepted for (30a), 
and J S  -f, i.e. J+ fGO,  for (306). Equation (166) at r = p  leads to the result that 
f S J 6 f Hp’ for 4o and - f 3 J > fHp2 for ,yo. Together we obtain a compact expression 
for the index 

n+ - n- = [fHp2+f].  (31) 

For the RHS of the APS theorem (l’), the first term contributes $Hp2, and the surface 
term, from (lg’), is 

which is precisely what is needed for the APS theorem (1‘). This result holds whether 
or not there is a small hole around the origin, because the boundary conditions (9) 
and (16a) at r=O are satisfied even though J =  *f. If there is a small hole with a 
radius 6 around the origin and V(6) # 0, we have 

f( p ) = (4 Hp2 + f) - f 
f( 6) = f - ($Hi32 + f) 

and i H S 2 < J S f H p 2  for I#I~ and - f H S 2 z J > i H p 2  for xo,  

n+ - n- = [i Hp2 + $1 - [i Ha2 + $1 
=fH(p2-S2)- f (p) - f (6) .  

(33) 

(34) 

In summary, Ninomiya and Tan wrote a beautiful paper; unfortunately, with a 
defect. This letter is only a complement to their paper. 

The author would like to thank Professor R Blankenbecler and Dr D Boyanovsky for 
discussions. It is a pleasure to thank Professor S D Drell and the Theory Group at 
SLAC for their warm hospitality. This paper is supported by the Department of Energy, 
under contract DE-AC03-76SF00515. 
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